Thursday, 5 March 2009

DAVID X. LI - Enter The Dragon


Enter Li, a star mathematician who grew up in Mao's Red Guards-led Cultural Revolution in rural China in the 1960s. He excelled in school and eventually got a master's degree in economics from Nankai University before leaving the country to get an MBA from Laval University in Quebec. That was followed by two more degrees: a master's in actuarial science and a PhD in statistics, both from Ontario's University of Waterloo. In 1997 he landed at Canadian Imperial Bank of Commerce, where his financial career began in earnest; later, via JPMorgan Chase, he moved to Barclays Capital and by 2004 was charged with rebuilding its quantitative analytics team.
Li's trajectory is typical of the quant era, which began in the mid-1980s. Academia could never compete with the enormous salaries that banks and hedge funds were offering. At the same time, legions of math and physics PhDs were required to create, price, and arbitrage Wall Street's ever more complex investment structures.
In 2000, while working at JPMorgan Chase, Li published a paper in The Journal of Fixed Income titled "On Default Correlation: A Copula Function Approach." (In statistics, a copula is used to couple the behavior of two or more variables.) Using some relatively simple math—by Wall Street standards, anyway—Li came up with an ingenious way to model default correlation without even looking at historical default data. Instead, he used market data about the prices of instruments known as credit default swaps.
David X. Li - Illustration: David A. Johnson - If you're an investor, you have a choice these days: You can either lend directly to borrowers or sell investors credit default swaps, insurance against those same borrowers defaulting. Either way, you get a regular income stream—interest payments or insurance payments—and either way, if the borrower defaults, you lose a lot of money. The returns on both strategies are nearly identical, but because an unlimited number of credit default swaps can be sold against each borrower, the supply of swaps isn't constrained the way the supply of bonds is, so the CDS market managed to grow extremely rapidly. Though credit default swaps were relatively new when Li's paper came out, they soon became a bigger and more liquid market than the bonds on which they were based.
When the price of a credit default swap goes up, that indicates that default risk has risen. Li's breakthrough was that instead of waiting to assemble enough historical data about actual defaults, which are rare in the real world, he used historical prices from the CDS market. It's hard to build a historical model to predict Alice's or Britney's behavior, but anybody could see whether the price of credit default swaps on Britney tended to move in the same direction as that on Alice. If it did, then there was a strong correlation between Alice's and Britney's default risks, as priced by the market. Li wrote a model that used price rather than real-world default data as a shortcut (making an implicit assumption that financial markets in general, and CDS markets in particular, can price default risk correctly).
It was a brilliant simplification of an intractable problem. And Li didn't just radically dumb down the difficulty of working out correlations; he decided not to even bother trying to map and calculate all the nearly infinite relationships between the various loans that made up a pool. What happens when the number of pool members increases or when you mix negative correlations with positive ones? Never mind all that, he said. The only thing that matters is the final correlation number—one clean, simple, all-sufficient figure that sums up everything. The effect on the securitization market was electric. Armed with Li's formula, Wall Street's quants saw a new world of possibilities. And the first thing they did was start creating a huge number of brand-new triple-A securities. Using Li's copula approach meant that ratings agencies like Moody's—or anybody wanting to model the risk of a tranche—no longer needed to puzzle over the underlying securities. All they needed was that correlation number, and out would come a rating telling them how safe or risky the tranche was.
As a result, just about anything could be bundled and turned into a triple-A bond—corporate bonds, bank loans, mortgage-backed securities, whatever you liked. The consequent pools were often known as collateralized debt obligations, or CDOs. You could tranche that pool and create a triple-A security even if none of the components were themselves triple-A. You could even take lower-rated tranches of other CDOs, put them in a pool, and tranche them—an instrument known as a CDO-squared, which at that point was so far removed from any actual underlying bond or loan or mortgage that no one really had a clue what it included. But it didn't matter. All you needed was Li's copula function.
The CDS and CDO markets grew together, feeding on each other. At the end of 2001, there was $920 billion in credit default swaps outstanding. By the end of 2007, that number had skyrocketed to more than $62 trillion. The CDO market, which stood at $275 billion in 2000, grew to $4.7 trillion by 2006. At the heart of it all was Li's formula. When you talk to market participants, they use words like beautiful, simple, and, most commonly, tractable. It could be applied anywhere, for anything, and was quickly adopted not only by banks packaging new bonds but also by traders and hedge funds dreaming up complex trades between those bonds. "The corporate CDO world relied almost exclusively on this copula-based correlation model," says Darrell Duffie, a Stanford University finance professor who served on Moody's Academic Advisory Research Committee. The Gaussian copula soon became such a universally accepted part of the world's financial vocabulary that brokers started quoting prices for bond tranches based on their correlations. "Correlation trading has spread through the psyche of the financial markets like a highly infectious thought virus," wrote derivatives guru Janet Tavakoli in 2006.
The damage was foreseeable and, in fact, foreseen. In 1998, before Li had even invented his copula function, Paul Wilmott wrote that "the correlations between financial quantities are notoriously unstable." Wilmott, a quantitative-finance consultant and lecturer, argued that no theory should be built on such unpredictable parameters. And he wasn't alone. During the boom years, everybody could reel off reasons why the Gaussian copula function wasn't perfect. Li's approach made no allowance for unpredictability: It assumed that correlation was a constant rather than something mercurial. Investment banks would regularly phone Stanford's Duffie and ask him to come in and talk to them about exactly what Li's copula was. Every time, he would warn them that it was not suitable for use in risk management or valuation.
In hindsight, ignoring those warnings looks foolhardy. But at the time, it was easy. Banks dismissed them, partly because the managers empowered to apply the brakes didn't understand the arguments between various arms of the quant universe. Besides, they were making too much money to stop.
In finance, you can never reduce risk outright; you can only try to set up a market in which people who don't want risk sell it to those who do. But in the CDO market, people used the Gaussian copula model to convince themselves they didn't have any risk at all, when in fact they just didn't have any risk 99 percent of the time. The other 1 percent of the time they blew up. Those explosions may have been rare, but they could destroy all previous gains, and then some.
Li's copula function was used to price hundreds of billions of dollars' worth of CDOs filled with mortgages. And because the copula function used CDS prices to calculate correlation, it was forced to confine itself to looking at the period of time when those credit default swaps had been in existence: less than a decade, a period when house prices soared. Naturally, default correlations were very low in those years. But when the mortgage boom ended abruptly and home values started falling across the country, correlations soared.
Bankers securitizing mortgages knew that their models were highly sensitive to house-price appreciation. If it ever turned negative on a national scale, a lot of bonds that had been rated triple-A, or risk-free, by copula-powered computer models would blow up. But no one was willing to stop the creation of CDOs, and the big investment banks happily kept on building more, drawing their correlation data from a period when real estate only went up. "Everyone was pinning their hopes on house prices continuing to rise," says Kai Gilkes of the credit research firm CreditSights, who spent 10 years working at ratings agencies. "When they stopped rising, pretty much everyone was caught on the wrong side, because the sensitivity to house prices was huge. And there was just no getting around it. Why didn't rating agencies build in some cushion for this sensitivity to a house-price-depreciation scenario? Because if they had, they would have never rated a single mortgage-backed CDO."
Bankers should have noted that very small changes in their underlying assumptions could result in very large changes in the correlation number. They also should have noticed that the results they were seeing were much less volatile than they should have been—which implied that the risk was being moved elsewhere. Where had the risk gone? They didn't know, or didn't ask. One reason was that the outputs came from "black box" computer models and were hard to subject to a commonsense smell test. Another was that the quants, who should have been more aware of the copula's weaknesses, weren't the ones making the big asset-allocation decisions. Their managers, who made the actual calls, lacked the math skills to understand what the models were doing or how they worked. They could, however, understand something as simple as a single correlation number. That was the problem.
"The relationship between two assets can never be captured by a single scalar quantity," Wilmott says. For instance, consider the share prices of two sneaker manufacturers: When the market for sneakers is growing, both companies do well and the correlation between them is high. But when one company gets a lot of celebrity endorsements and starts stealing market share from the other, the stock prices diverge and the correlation between them turns negative. And when the nation morphs into a land of flip-flop-wearing couch potatoes, both companies decline and the correlation becomes positive again. It's impossible to sum up such a history in one correlation number, but CDOs were invariably sold on the premise that correlation was more of a constant than a variable.
No one knew all of this better than David X. Li: "Very few people understand the essence of the model," he told The Wall Street Journal way back in fall 2005. "Li can't be blamed," says Gilkes of CreditSights. After all, he just invented the model. Instead, we should blame the bankers who misinterpreted it. And even then, the real danger was created not because any given trader adopted it but because every trader did. In financial markets, everybody doing the same thing is the classic recipe for a bubble and inevitable bust.
Nassim Nicholas Taleb, hedge fund manager and author of The Black Swan, is particularly harsh when it comes to the copula. "People got very excited about the Gaussian copula because of its mathematical elegance, but the thing never worked," he says. "Co-association between securities is not measurable using correlation," because past history can never prepare you for that one day when everything goes south. "Anything that relies on correlation is charlatanism."
Li has been notably absent from the current debate over the causes of the crash. In fact, he is no longer even in the US. Last year, he moved to Beijing to head up the risk-management department of China International Capital Corporation. In a recent conversation, he seemed reluctant to discuss his paper and said he couldn't talk without permission from the PR department. In response to a subsequent request, CICC's press office sent an email saying that Li was no longer doing the kind of work he did in his previous job and, therefore, would not be speaking to the media.
In the world of finance, too many quants see only the numbers before them and forget about the concrete reality the figures are supposed to represent. They think they can model just a few years' worth of data and come up with probabilities for things that may happen only once every 10,000 years. Then people invest on the basis of those probabilities, without stopping to wonder whether the numbers make any sense at all. As Li himself said of his own model: "The most dangerous part is when people believe everything coming out of it."
from: article by Felix Salmon (felix@felixsalmon.com) writes the Market Movers financial blog at Portfolio.com.

No comments: